CS 4100: Introduction to Al

Wayne Snyder
Northeastern University

Lecture 21: Deep Learning — Generalization; Convolutional Networks

Generalization

Plan for this Lecture:

* Image Classification: MNIST Digit Classification
* Generalization

* Convolutional Networks for Image Processing

Monday's Lecture:

* Sequence Models
 Recurrent Networks

Binary Classification

Recall: In Binary Classification, our goal is to label the data (e.g., text,
images, sounds) with one of 2 labels.

N U e WN R

model = keras.Sequential([

layers.Dense(32, activation="relu"),
layers.Dense(32, activation="relu"),
layers.Dense(16, activation="relu"),
layers.Dense(1l, activation="sigmoid") <

1)

model.compile(optimizer="adam",

loss="binary_crossentropy", ¢

metrics=["accuracy"])

history = model.fit(partial_ x_train,
partial_y_train,

epochs=20,
verbose=0,

batch_size=512,
validation_split=0.2)

display_graphs(history)

model.evaluate(x_test, y_ test)

Training and validation loss

® Taining loss
0.8 1 — validation loss
06
"
9
S04
.
02 °
.
* .
00 ® ® o e o e e o e e e o e
25 50 75 100 125 150 175 200
Epochs
Training and validation accuracy
100 1 @ Taining acc e ® © o o o o o e o o o o o o
— Validationacc o
095 .
.
> 090
3
2
g
£ 085
0380
075 .
25 50 75 100 125 150 175 200
Epochs
782/782 [] - 1s 8l4us/step - loss: 0.8836 - accuracy: 0.8555
[0.8836396336555481, 0.8555200099945068]

Input
(vectorized text)

P

Dense (units=16)
(N

) '

Dense (units=16)
-

) !

-

Dense (units=1)

Y
Output
(probability)

Multiclass and Multilabel Classification

In Multiclass Classification, we have more than 2 labels, and our task is to assign a single
label to each sample:

In Multilabel Classification, we have more than 2 labels, and our task is to assign any
appropriate labels (not just one):

Binary Classification Multiclass Classification

Multilabel Classification

Dog Not Dog Dog Cat Bus Plant Dog Cat Bus Plant |
0.5 0.09 0.01 0.4 0.8 0.2 0.04 0.7 |

Let's look at an example of multiclass classification, using the MNIST handwritten digits
database....

Multiclass Classification

We will consider the MNIST database of handwritten digits:

> B © 0 |+

Q M

v

[View Active Events

kaggle
Create

Home
Competitions
Datasets
Models

Code
Discussions
Learn

More

Q Search

K
a HOJJAT KHODABAKHSH - UPDATED 4 YEARS AGO - 7

MNIST Dataset

The MNIST database of handwritten digits (http://yann.lecun.com)

Data Card Code (52) Discussion (0)

About Dataset

Context

MNIST is a subset of a larger set available from NIST (it's copied from http://yann.lecun.com/exdb/mnist/)

Content

The MNIST database of handwritten digits has a training set of 60,000 examples, and a test set of 10,000 examples. .

Four files are available:

train-images-idx3-ubyte.gz: training set images (9912422 bytes)

train-labels-idx1-ubyte.gz: training set labels (28881 bytes)

t10k-images-idx3-ubyte.gz: test set images (1648877 bytes)

t10k-labels-idx1-ubyte.gz: test set labels (4542 bytes)

How to read
See sample MNIST reader

Acknowledgements

New Notebook

a

Usability ©
7.50

License
Data files © Original Authors

Expected update frequency
Not specified

SwdeNIT WP ~Q

Multiclass Classification

The MNIST digit database consists of 70,000 28x28 BW pixel images, stored as 28*28=784
floating-point numbers in the range [0..1]; labels are integers 0..9:

a(4) 101) 0 (0

In [33]: print(training_images[0])

0 C P00 0O OO OO0 OO0 0000000000000000000000000000000000O000000 0

.05882353 0.08235294

. 05882353
.54901963 49019608
77 a8) 1 °
16862746 98039216 49019608
= .7176471 98039216 49019608
202 T 11

9882353 Note that the
array is sparse,

69411767

98039216 0.49019608

Shuffled Image Set [0] = 9

R Sttt A R
ceoeeepeoeeeeeePeeoe oo PP PR PO ePeRPRRP PR PR PR PR e PR PP R0
S b S
S S S R R S R R S S S S S S L S S S S S a4
PP PP PP PP PP PP PP PO e e PO PO e PR e P0P0 202020200009 020200

0 08627451 0.7176471 0.9882353 0.99607843 0.93333334 0.4117647 it is mostly 0's.
11372549 0.65882355 0.98039216
98039216 0.93333334 0.43529412
5
08627451 0.65882355 0.98039216 0.98039216 0.98039216 0.4117647
10
7176471 0.98039216
98039216 0.98039216 0.98039216
s 9882353 0.98039216 0.98039216 0.98039216
98039216
.41960785 0.27450982
x Etc.
In [36]: print(train_labels[:100])
z [50419213143536172869409112432738690°5F€6
0761879398593 30749809414460456100171°%6
: : = - P = 3021179026783904674680°7831]

Multiclass Classification

As usual, the database is stored in four parts, split into training and testing sets already:

In [1]: import tensorflow as tf
from tensorflow import keras
from keras import layers

from keras.datasets import mnist

W N =

162 B =

import numpy as np
import matplotlib.pyplot as plt

In [2]:

[

(train_images,train_labels), (test_images,test labels) = mnist.load _data()

In [3]: 1 train_ images.shape

out[3]: (60000, 28, 28)

In [4]: 1 train labels.shape

Out[4]: (60000,)

In [5]: 1 test_images.shape

Out[5]: (10000, 28, 28)

In [6]: 1 test_labels.shape

Oout[6]: (10000,)

Multiclass Classification

However, just to show the complete process, let's combine training and test sets, and go
through the process of creating training, validation, and test sets for data and labels:

In [25]: v # Just to show, let's put all the data together, shuffle, and separate

into training, validation, and test sets.

images = np.concatenate([train_images,test_images])
labels = np.concatenate([train_labels,test_labels])

AU WN =

~

num_data_instances = len(images)

O o

shuffled indices = np.random.permutation(num data instances)

o

_ _ o Important: randomize the
images = images[shuffled indices] .
labels = 1abels[shuffled_indices]| orderlng ofyour data!

I
N =

In [11]: validation_percent = 0.1

1
2 testing percent = 0.2
3
L

training end = int(len(images) * (1 - validation percent - testing percent))
5 validation_end = int(len(images) * (1 - testing_percent))

training images = images[:training_end]
training labels = labels[:training end]

10 validation images = images[training end:validation_end]
validation_labels labels[training end:validation_end]

testing images = images[validation_end:]
testing labels = labels[validation_end:]

In [34]: 1 print(training images.shape)
2 print(training labels.shape)
3 print(validation_images.shape)
i print(validation_labels.shape)
5 print(testing images.shape)
6 print(testing labels.shape)

(49000, 784)
(49000,)
(7000, 784)
(7000,)
(14000, 784)
(14000,)

Multiclass Classification

In [17]: v 1 model = keras.Sequential([
2 layers.Dense(512,activation="relu"),
3 layers.Dense(10,activation='softmax"')
4 1)
2
v 6 model.compile(optimizer = 'rmsprop',
7 loss = 'sparse categorical crossentropy',
8 metrics = ['accuracy'])
9
v 10 history = model.fit(training images,
11 training labels,
12 verbose= 0,
13 epochs=100,
14 batch_size=64,
15 kalidation_data=(validation_images,validation_labels))
16
17 model.summary()
Epoch 1/100
Epoch 2/100
Epoch 3/100
Epoch 4/100
Epoch 5/100 In [27]: 1 model.summary ()
Epoch 6/100 Model: "sequential 1"
Epoch 7/100
Epoch 8/100 Layer (type) Output Shape Param #
Epoch 9/100
Epoch 10/100 dense_2 (Dense) (None, 512) 401920
Epoch 11/100 dense_3 (Dense) (None, 10) 5130
Epoch 12/100
Epoch 13/100 Total params: 407,050
Epoch 14/100 Trainable params: 407,050
Epoch 15/100 Non-trainable params: 0
Epoch 16/100
Epoch 17/100
Epoch 18/100
Epoch 19/100
— - oL An/ann
In [18]: 1 model.evaluate(testing images, testing labels,batch size = 128)
110/110 [] - 0s 2ms/step - loss: 0.2465 - accuracy: 0.9795
Out[18]: [0.24646691977977753, 0.9794999957084656]

Multiclass Classification

0.20 1

0.15 1

Loss

0.10 1

0.05 1

0.00

100 -

0.99 1

0.98 1

Accuracy

0.95 1

0.94 1

0.93 1

Training and validation loss

¢ Taining loss
- Validation loss

...
...........' LA AL L R L L A L L R L L A A L L A L Ll R A L A L R L L L Al R L A A A A L R L L A L L R R A A A L R A A A L R LA AL L]

20 40 60 80 100
Epochs

Training and validation accuracy

0.97 -

0.96 1

e e
.t
.

* Taining acc
= Validation acc

80 100
Epochs

Best Validation Accuracy: 0.9813 at epoch 40

Multiclass Classification

Remember: Always consider your baseline!

In [32]: v

In [37]:

Out[37]:

y
A

Count
Count
Count
Count
Count
Count
Count
Count
Count
Count

of
of
of
of
of
of
of
of
of
of

1 for d in range(1l0):

print("Count of",d,":",list(train_labels).count(d))

WO gL ds W = o

: 5923
: 6742
: 5958
: 6131
: 5842
: 5421
: 5918
: 6265
: 5851
: 5949

1 model.evaluate(testing images, randint(10,size=len(testing labels)), batch size = 128)

110/110 [

] - Os 2ms/step - loss: 4.1812 - accuracy: 0.1021

[4.181239128112793,

0.10207142680883408]

So 98% looks really great compared with random labels!

Generalization and Overfitting

Generalization — the ability of a NN to learn the patterns in a data set so as to
perform well on data it has never seen — is the most important issue in deep

learning.

The problem is overfitting — the NN is starting to "memorize" the training . o 5%

set without learning the most important patterns which characterize the ° o e®

essential information present in the data. . OOOI:": e f.
S

Overfitting can be seen when the training loss goes down, but the validation

loss goes up. In general, you will see the validation accuracy peak at some
epoch and then goes down (generally not as noticably as the rise in the
validation loss):

Loss
value

“
*\ Underfitting
A
...\
2

....... - Training curve
== == == \/alidation curve

Training timé

Figure 5.1 Canonical overfitting behavior

Training and validation loss

* Taining acc
— Validation acc

0 20 40

Epoc

Best Validation Accuracy: 0.9813 at epoch 40

hs

100

Generalization: Overfitting

The problem is that a NN can learn ANY data set you give it, essentially by
memorizing the exact training set. Here 1s a dramatic example: we randomly
permute the labels, so that there is no correspondence between data and labels.

The model continues to "learn" the training set, but the validation accuracy remains
around the baseline of 10%.

Training and validation loss

* Taining loss
4.0 1 — validation loss
35
8 shuffled _indices = np.random.permutation(num data instances) 30
9 shuffled indices2 = np.random.permutation(num_data_instances) @
n Q
lu - 25
11 images = images[shuffled_indices]
12 labels = labels[shuffled_indices2] 20
13
15
0 10 20 30 40 50
Epochs
Training and validation accuracy
* Taining acc ce ®
0.5 { — Validation acc o
....
In [37]: 1 model.evaluate(testing_images, randint(10,size=len(testing_labels)), batch_size = 128) 04
>
110/110 [] - 0s 2ms/step - loss: 4.1812 - accuracy: 0.1021 §
o 03
Out[37]: [4.181239128112793, 0.10207142680883408] £
02
..
01 > —
0 10 20 30 40 50
Epochs

Best Validation Accuracy: 0.1139 at epoch 0

Generalization

Digression: This is an issue throughout machine learning. In the IPD experiment in
HW 035, agents can learn how to do pretty well in an environment of random agents:

Random_Env

Rewards
60000
55000
b
]
& 50000
45000
40000 T T T T T T
0 20 40 60 80 100
Generations
Strategy as Probability of Cooperate
10 —— First
CcC
- D
08 - DC
) | — DD
© 06
- &Y G) \ A\ AA
2 04 ’ V / ol \VAAW \
° v \ / v V
a \
2z A A A
0 2 4 &0 80 100

Generations

Generalization: Overfitting

Overfitting 1s often due to data which 1s
o Noisy (non-data, ambigious, or outliers)
o Mislabeled

o Or has rare features or spurious correlations.

Noisy Data in MNIST: Mislabeled data in MNIST:
@ Label: 9 Label: 7 Label: 4 Label: 3 Label: 5
3 Figure 5.3 Mislabeled MNIST training samples

Area of uncertainty

o © :’l - g ° o

O 00~ 40 #4C @ O 00 40 e
00 O e ° 00 .O- e o

o O o: @ ° o © NS >
® ¢ © BB S %e O 0 © 0 0! e
o O @9 ° L 0 0.0 0o
© o fNVN, ,° © ofLENe o

O e e ° cC,/e_ e
J ® :

O. e 4 (j,-" oe .

Figure 5.5 Robust fit vs. overfitting giving an ambiguous area of the feature space

Generalization: Overfitting

Overfitting 1s often due to data which 1s
o Noisy (non-data, ambigious, or outliers)
o Mislabeled

o Or has rare features or spurious correlations.
Rare features

If your data contains "one-off" features (e.g., a "Getty Images" logo in one image, or
a unique or misspelled word in an email), the NN will learn to associate that feature
with its label — it 1s overfitting!

Spurious Correlations

This 1s actually worse—and more common—than rare features. A word may occur
100s of time in movie reviews, but by a statistical fluke, it occurs in 58% of the
positive reviews, and 42% of the negative reviews. The NN will give this word
undue weight in learning the data set.

Generalization: Overfitting

Overfitting 1s often due to data which 1s
o Noisy (non-data, ambigious, or outliers)
o Mislabeled

o Or has rare features or spurious correlations.
Rare features

If your data contains "one-off" features (e.g., a "Getty Images" logo in one image, or
a unique or misspelled word in an email), the NN will learn to associate that feature
with its label — it 1s overfitting!

Spurious Correlations

This 1s actually worse—and more common—than rare features. A word may occur
100s of time in movie reviews, but by a statistical fluke, it occurs in 58% of the
positive reviews, and 42% of the negative reviews. The NN will give this word
undue weight in learning the data set.

Generalization: A Deep Dive into the Math

The Manifold Hypothesis

A manifold in an N dimensional space is a set of points which 1s isomophic to a lower-
dimensional space that is Euclidean, i.e., is continuous and has a notion of "distance."

Ex 1: A curved line is literally in 2 D, but can be mapped 1-to-1 (isomophic)toa 1 D

line:
Ex 2: A crumpled piece of paper is 3 D, but is Ex 3:
1somophic to a 2D (flat) piece of paper: Mébius strip

) . " Figure 5.9 Uncrumpling a
complicated manifold of data

Generalization: A Deep Dive into the Math

The Manifold Hypothesis 1s "that many high-dimensional data sets that occur in the real
world actually lie along low-dimensional latent manifolds inside that high-dimensional
space. As a consequence of the manifold hypothesis, many data sets that appear to
initially require many variables to describe, can actually be described by a comparatively
small number of variables, likened to the local coordinate system of the underlying
manifold. It 1s suggested that this principle underpins the effectiveness of machine
learning algorithms in describing high-dimensional data sets by considering a few
common features." -Wikipedia

Your model is searching in a high-dimensional space
(= number of parameters attached as weights to
neurons) for a representation of the data (lower Originallatent space
dimensional manifold). The spaces are continuous =7 |

and have a notion of distance, which are intrinsic to
the gradient descent algorithm:

Sparse sampling: the @ Dense sampling: Q

model learned doesn’t the model learned

match the latent approximates the
space and leads to latent space well,
incorrect interpolation. and interpolation

leads to generalization.

::320.' 0ol

S

L] T
/Il < "“fll 4
T
i TR i
0%
lIIII‘l,'lz 2

Figure 5.11 A dense sampling of the input space is necessary in order to learn a model
capable of accurate generalization.

Generalization: A Deep Dive into the Math

Before training:
the model starts
with a random initial state.

O
Or QO o0
@.
LS o:o©o
OfO .QO
o0 ®

Beginning of training:
the model gradually
moves toward a better fit.

O

L ’ooo

= oo.oc
o % e

Test time: performance
of robustly fit model
on new data points

’
v
-
-
-
v
-’
’
¢

OO-;"Q: o ®
9@ o @
® e . @

Further training: a robust
fit is achieved, transitively,
in the process of morphing

the model from its initial

state to its final state.

Test time: performance
of overfit model
on new data points

0

~__

y @

o 0.

ooo'
0CC0™ o
® @ :.

Final state: the model
overfits the training data,
reaching perfect training loss.

Y ~
~ -
.

Figure 5.10 Going from a random model to an overfit model, and achieving a robust fit as an intermediate state

Generalization: Underfitting and Overfitting

Overfitting 1s not a sign that something is wrong with your model, in fact, it shows that
your model has sufficient power to represent the patterns that characterize the true
"meaning" of the data. You just have to find ways to control this power.

Chollet, p.138: "The first big milestone of a machine learning project: getting a model
that has some generalization power (it can beat a trivial baseline) and that is able to

overfit." p.141: "Remember that it should always be possible to overfit."

....... - Training curve
Loss - === == \/alidation curve
value | %\ Underfitting
B\
o‘.\
2
) 2
\\ Overfitting _-—"
~_ Robustft _ _——""
N"h e —— "
Training timé

Figure 5.1 Canonical overfitting behavior

Generalization

Improving generalization can be accomplished by various techniques.

Getting more data, improving your data: more data is almost always better; make sure
there are minimal labeling errors, reconsider your data normalization.

If you can not get more data, consider data augmentation: manipulating your existing
data in ways that produce different samples with the same essential information.

Generalization

Improving generalization can be accomplished by various techniques.

Tuning hyperparameters: Play with the hyperparameters, including learning rate and
batch size.

Better feature engineering: Use domain knowledge about the data, and experience with
the model you are using to better represent the data. Tools can help with feature selection

(find out which features are making the most difference).

Example: How to represent a clock face: pixels, clock hands' coordinates, angles:

7/,
7,

Sz U
N I v, &\ W,

S z 3 Zz
Raw data: = = = =
ixel grid = 3 = =
Pres 7, S S
Znm K\
Better {x1: 0.7, {x1: 0.0,
features: y1:0.7} y2:1.0}
clock hands’ {x2: 0.5, {x2:-0.38,
coordinates y2: 0.0} y2: 0.32}
Even better thetal: 45 theta1: 90
features: theta2: 0 theta2: 140 i i i
angles of Figure 5.16 Feature engineering

clock hands for reading the time on a clock

Generalization

Improving generalization can be accomplished by various techniques.

Early Stopping: Stop training when a robust fit 1s achieved. This can often be done
automatically by setting a parameter in your model.

Here 1s a naive example of early stopping, which does not do so well:

from tensorflow.keras.callbacks import EarlyStopping
early stopping = EarlyStopping()

i} custom early stopping = EarlyStopping(

monitor='val accuracy',
patience=8,
min_delta=0.001,
mode="max

model = keras.Sequential((
layers.Dense(512,activation="relu"),
layers.Dense(10,activation='softmax’)

3]

» model.compile(optimizer = 'rmsprop’,

loss = 'sparse categorical crossentropy',
metrics = ['accuracy'))

0 history = model.fit(training_ images,

training labels,

verbose~ 0,

epochs=50,

batch_sizewéd,

callbacks~(early stopping],

validation data~(validation images,validation labels))

display results(history)

9 model.evaluate(testing images, testing labels, batch size = 12E)

Traiming and validaton loss
0.250

0225
0.200
017s

0150

Loss

0075

0.050
10 15 20 25
Epechs
Traming and validation accuracy

o Tainng acc
096 | = Validation acc

zZ
< pas
094
093 .
0 5 20 2
Epechs

Best Validation Accuracy: 0.9749 at epoch 2
110/110 |

(0.11679539084434509, 0.9688571691513062)

* TFaming loss
Validation loss

0125
0.100

] - 08 lms/step - loss: 0.1168 - accuracy: 0.9689

Generalization

Improving generalization can be accomplished by various techniques.

Early Stopping: Stop training when a robust fit 1s achieved. This can often be done
automatically by setting a parameter in your model.

Tuning the early stopping callback results in better results:

from tensorflow.keras.callbacks import EarlyStopping
early stopping = EarlyStopping()
custom early stopping = BarlyStopping(

monitor='val accuracy',

patience=8,

min delta=0.001,

mode= ‘max

model = keras.Sequential((
layers.Dense(512,activation="relu"),
layers.Dense(10,activation='softmax’)

n

model.compile(optimizer = 'rmsprop’,
loss = 'sparse categorical crossentropy',
metrics = ['accuracy'))

history = model.fit(training images,
training labels,
verbose~ 0,
epochs=50,
batch_sizewédq,
callbacks=[custom early stopping],

validation data=(validation images,validation la

display results(history)

model.evaluate(testing images, testing labels,batch size = 12E)

In (36):

Out([36):

Training and validation loss

0.05 .
.
L
000 * e . .
'
o 5 0 15
Epcchs
Traming and vahidation accuracy
9 e Fanmgac R T
— Validation scc . *° °
099

T v v
] 5 10 15
Epechs

Best Validation Accuracy: 0.9839 at epoch 13

1 model.evaluate(testing images, testing labels,batch _size = 12B8)

110/110 |

[0.14754530787467957, 0.9807142615318293)

« Faming loss
— Validation loss

2

] - 08 lms/step - loss: 0.1475 - accuracy: 0.9807

Generalization

Regularization: Various techniques which "actively impede the model's ability to fit
perfectly to the training data, with the goal of making the model perform better during

validation." The model is simpler, more "regular."

Reduce model size (but not too small):

-== Validation loss of original model L4 -==- Validation loss of original model
0.7 4 — Validation loss of smaller model " 104 — Validation loss of larger model
0.6 054
[
o g
S 0.5 =
= 0.6
0.4
0.4 1
0.3 1
T T T T T T T T 25 5.0 1.5 10.0 125 150 17,5 20.0
2:5 5.0 7.5 10.0 125 15.0 175 20.0 Epochs

Epochs
Figure 5.18 Original model vs. much larger model on IMDB review

Figure 5.17 Original model vs. smaller model on IMDB review classification classification

Generalization

Regularization: Various techniques which "actively impede the model's ability to fit
perfectly to the training data, with the goal of making the model perform better during
validation." The model is simpler, more "regular."

Weight Regularization: Place limits on how large the weights in the model can become,
so that the model is forced to be simpler (having fewer possibilities of weights).
There are two flavors:

= LI regularization—The cost added is proportional to the absolute value of the
weight coefficients (the L1 norm of the weights).

= L2 regularization—The cost added is proportional to the square of the value of the
weight coefficients (the L2 norm of the weights). L2 regularization is also called
weight decay in the context of neural networks. Don’t let the different name con-
fuse you: weight decay is mathematically the same as [.2 regularization.

Listing 5.13 Adding L2 weight regularization to the model -—- Validation loss of original model ;

0.7 { — Validation loss of L2-regularized model 7
from tensorflow.keras import regularizers

model = keras.Sequential ([
layers.Dense (16, 0.6 -
kernel regularizer=regularizers.12(0.002),
activation="relu"), v
layers.Dense (16, 2 0.54
kernel regularizer=regularizers.12(0.002),
activation="relu"),
layers.Dense (1, activation="sigmoid") 0.4
1)
model.compile (optimizer="rmsprop",
loss="binary crossentropy", 0.3 1

metrics=["accuracy" T T T T T T T T
[- S 25 5.0 75 10.0 12,5 15.0 17.5 20.0

Epochs

Figure 5.19 Effect of L2 weight regularization on validation loss

Generalization

Regularization: Various techniques which "actively impede the model's ability to fit perfectly to
the training data, with the goal of making the model perform better during validation." The
model is simpler, more "regular."

Adding Dropout: Dropout is applied to a layer, and is very simple: with some probability p,
drop out (as in, setting to 0.0) the outputs from the layer.

03(02|15]|00 00(02|15]|0.0
50%
06 (01]00|03| dropout |[06|0.1/0.0|03 Figure 5.20 Dropout applied to
"2 an activation matrix at training

time, with rescaling happening
07105110100 071000000 during training. At test time the
activation matrix is unchanged.

Y

02(19]03]|12 0.0|19(03]00

This 1s one of the weirdest great ideas in Deep Learning: it seems like it can't possibly help, but
it 1s one of the most effective and most common ways to regularize your model.

usung 5.15 Addlng dropout to the IMDB model -== Validation loss of original model e

0.7 1 — Validation loss of dropout-regularized model /
PR

model = keras.Sequential ([
layers.Dense (16, activation="relu"),
layers.Dropout (0.5)
layers.Dense (16, activation="relu"), "
layers.Dropout (0.5), 8 0.5
layers.Dense (1, activation="sigmoid")
&
model.compile (optimizer="rmsprop",
loss="binary crossentropy",
metrics=["accuracy"])
history dropout = model.fit(
train data, train labels,
epochs=20, batch size=512, validation split=0.4)

2.5 5.0 7.5 10.0 125 15.0 175 20.0
Epochs

Figure 5.21 Effect of dropout on validation loss

Generalization

Regularization: Various techniques which "actively impede the model's ability to fit perfectly to
the training data, with the goal of making the model perform better during validation." The
model is simpler, more "regular."

Reconsidering your choice of architecture: Add more layers, or fewer, or of different widths.
Consider starting with wider layers, and getting narrower as you go deeper.

Consider different kinds of layers better suited to your data. Google around to see what others
have done successfully with similar data.

For example, complex image data is almost always processed using a completely different kind
of layer.....

Convolutional Neural Networks

CNNs add convolution and pooling layers to focus on small regions of the data
(here, images). Each input to the next layer 1s calculated as the dot product of
the convolution kernel with a small region of the image.

Center element of the kernel is placed over the (0 x0)
source pixel. The source pixel is then replaced
with a weighted sum of itself and nearby pixels.

Source pixel

Convolution

New pixel value (destination pixel)

Convolutional Neural Networks

The convolution kernels are moved around the image, perhaps by some skip....

J

[— — / d—f —
i VT T AT T T T A
[S S— "0 S/ -y
VS s)) el

f=3 Zero padding .’ S S

Convolutional Neural Networks

Since data 1s shared in the region covered by the kernel, various “features” of
the image can be recognized in multiple places around the image:

‘ Feature Feature

Map 1

u\\v PR

e

Convolutional Neural Networks

And layers can be stacked.....

Convolutional
layer 2

Convolutional
layer 1

Input layer

Convolutional Neural Networks

And layers can be stacked

Convolutional

Feature Q layer 2
(BT WMap 1 '
V=" aute i
Fiters £
Convolutional
[~ Map1 layer 1

M v

Input layer

Channels
Red
Green
Blue

Convolutional Neural Networks

A pooling layer reduces the dimensionality by averaging (or taking max) of
small regions in the previous layer:

Convolutional Neural Networks

It 1s typical to alternate convolution and pooling layers and end with fully
connected layers before output:

Table 14-1. LeNet-5 architecture

Layer Type Maps Size Kernel size Stride Activation
Out Fully Connected - 10 - - RBF
F6 Fully Connected - 84 - - tanh
- u @ () Convolution 120 1x1 5X%5 1 tanh
TS smminn o
L ’ : - 2 AgPooling 6 14x14 2x2 2 ftamh
Convolution Pooling Convolution Pooling Fully connected Q Convolution 6 28%28 §x%§ 1 tanh

N Input 1 NxAN - —_

Convolutional Neural Networks

Convolutional networks are built similarly to FF networks, but with different
components; you can specify all relevant hyperparameters:

Listing 8.1 Instantiating a small convnet

from tensorflow import keras
from tensorflow.keras import layers
inputs = keras.Input (shape=(28, 28, 1))

KoMK X oW N

layers.
layers.
layers.
layers.
layers.
layers.

Conv2D(filters=32, kernel size=3, activation="relu") (inputs)
MaxPooling2D (pool size=2) (x)

Conv2D(filters=64, kernel size=3, activation="relu") (x)
MaxPooling2D (pool size=2) (x)

Conv2D(filters=128, kernel size=3, activation="relu") (x)
Flatten () (x)

outputs = layers.Dense (10, activation="softmax") (x)
model = keras.Model (inputs=inputs, outputs=outputs)

