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Generalization

Plan for this Lecture:

• Image Classification: MNIST Digit Classification
• Generalization
• Convolutional Networks for Image Processing

Monday's Lecture:

• Sequence Models 
• Recurrent Networks



Binary Classification

Recall: In Binary Classification, our goal is to label the data (e.g., text, 
images, sounds) with one of 2 labels. 



Multiclass and Multilabel Classification

In Multiclass Classification, we have more than 2 labels, and our task is to assign a single 
label to each sample:

In Multilabel Classification, we have more than 2 labels, and our task is to assign any 
appropriate labels (not just one):

Let's look at an example of multiclass classification, using the MNIST handwritten digits 
database....



Multiclass Classification
We will consider the MNIST database of handwritten digits:



Multiclass Classification
The MNIST digit database consists of 70,000 28x28 BW pixel images, stored as 28*28=784 
floating-point numbers in the range [0..1];  labels are integers 0..9: 

Note that the 
array is sparse, 
it is mostly 0's.

Etc.



Multiclass Classification
As usual, the database is stored in four parts, split into training and testing sets already:



Multiclass Classification
However, just to show the complete process, let's combine training and test sets, and go 
through the process of creating training, validation, and test sets for data and labels:

Important: randomize the 
ordering of your data!



Multiclass Classification



Multiclass Classification



Multiclass Classification
Remember: Always consider your baseline!

So 98% looks really great compared with random labels! 



Generalization and Overfitting
Generalization – the ability of a NN to learn the patterns in a data set so as to
perform well on data it has never seen – is the most important issue in deep 
learning.
The problem is overfitting – the NN is starting to "memorize" the training 
set without learning the most important patterns which characterize the 
essential information present in the data. 

Overfitting can be seen when the training loss goes down, but the validation 
loss goes up. In general, you will see the validation accuracy peak at some 
epoch and then goes down (generally not as noticably as the rise in the 
validation loss): 



The problem is that a NN can learn ANY data set you give it, essentially by 
memorizing the exact training set. Here is a dramatic example: we randomly 
permute the labels, so that there is no correspondence between data and labels.
The model continues to "learn" the training set, but the validation accuracy remains 
around the baseline of 10%. 

Generalization: Overfitting



Generalization
Digression: This is an issue throughout machine learning. In the IPD experiment in 
HW 05, agents can learn how to do pretty well in an environment of random agents:



Generalization: Overfitting
Overfitting is often due to data which is

o Noisy (non-data,  ambigious, or outliers)
o Mislabeled
o Or has rare features or spurious correlations.  

Noisy Data in MNIST:                                        Mislabeled data in MNIST:



Generalization: Overfitting
Overfitting is often due to data which is

o Noisy (non-data,  ambigious, or outliers)
o Mislabeled
o Or has rare features or spurious correlations. 

Rare features 

If your data contains "one-off" features (e.g., a "Getty Images" logo in one image, or 
a unique or misspelled word in an email), the NN will learn to associate that feature 
with its label – it is overfitting!

Spurious Correlations

This is actually worse—and more common—than rare features. A word may occur 
100s of time in movie reviews, but by a statistical fluke, it occurs in 58% of the 
positive reviews, and 42% of the negative reviews. The NN will give this word 
undue weight in learning the data set. 



Generalization: Overfitting
Overfitting is often due to data which is

o Noisy (non-data,  ambigious, or outliers)
o Mislabeled
o Or has rare features or spurious correlations. 

Rare features 

If your data contains "one-off" features (e.g., a "Getty Images" logo in one image, or 
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This is actually worse—and more common—than rare features. A word may occur 
100s of time in movie reviews, but by a statistical fluke, it occurs in 58% of the 
positive reviews, and 42% of the negative reviews. The NN will give this word 
undue weight in learning the data set. 



Generalization: A Deep Dive into the Math
The Manifold Hypothesis

A manifold in an N dimensional space is a set of points which is isomophic to a lower-
dimensional space that is Euclidean, i.e., is continuous and has a notion of "distance." 

Ex 1:  A curved line is literally in 2 D, but can be mapped 1-to-1 (isomophic) to a 1 D 
line:

Ex 2: A crumpled piece of paper is 3 D, but is                                  Ex 3:
isomophic to a 2D (flat) piece of paper:



Generalization: A Deep Dive into the Math
The Manifold Hypothesis is "that many high-dimensional data sets that occur in the real 
world actually lie along low-dimensional latent manifolds inside that high-dimensional 
space. As a consequence of the manifold hypothesis, many data sets that appear to 
initially require many variables to describe, can actually be described by a comparatively 
small number of variables, likened to the local coordinate system of the underlying 
manifold. It is suggested that this principle underpins the effectiveness of machine 
learning algorithms in describing high-dimensional data sets by considering a few 
common features." -Wikipedia

Your model is searching in a high-dimensional space 
(= number of parameters attached as weights to 
neurons) for a representation of the data (lower 
dimensional manifold). The spaces are continuous 
and have a notion of distance, which are intrinsic to 
the gradient descent algorithm: 



Generalization: A Deep Dive into the Math



Generalization: Underfitting and Overfitting
Overfitting is not a sign that something is wrong with your model, in fact, it shows that 
your model has sufficient power to represent the patterns that characterize the true 
"meaning" of the data.  You just have to find ways to control this power. 

Chollet, p.138: "The first big milestone of a machine learning project: getting a model 
that has some generalization power (it can beat a trivial baseline) and that is able to 
overfit."  p.141: "Remember that it should always be possible to overfit." 



Generalization
Improving generalization can be accomplished by various techniques. 

Getting more data, improving your data:  more data is almost always better; make sure 
there are minimal labeling errors, reconsider your data normalization. 

If you can not get more data, consider data augmentation: manipulating your existing 
data in ways that produce different samples with the same essential information. 



Generalization
Improving generalization can be accomplished by various techniques. 

Tuning hyperparameters: Play with the hyperparameters, including learning rate and 
batch size. 

Better feature engineering:  Use domain knowledge about the data, and experience with 
the model you are using to better represent the data. Tools can help with feature selection 
(find out which features are making the most difference). 

Example:  How to represent a clock face:  pixels, clock hands' coordinates, angles:



Generalization

Improving generalization can be accomplished by various techniques. 

Early Stopping:  Stop training when a robust fit is achieved. This can often be done 
automatically by setting a parameter in your model. 

Here is a naive example of early stopping, which does not do so well:



Generalization
Improving generalization can be accomplished by various techniques. 

Early Stopping:  Stop training when a robust fit is achieved. This can often be done 
automatically by setting a parameter in your model. 

Tuning the early stopping callback results in better results:



Generalization
Regularization:  Various techniques which "actively impede the model's ability to fit 
perfectly to the training data, with the goal of making the model perform better during 
validation."   The model is simpler, more "regular."

Reduce model size (but not too small):



Generalization
Regularization:  Various techniques which "actively impede the model's ability to fit 
perfectly to the training data, with the goal of making the model perform better during 
validation."   The model is simpler, more "regular."

Weight Regularization:  Place limits on how large the weights in the model can become, 
so that the model is forced to be simpler (having fewer possibilities of weights).
There are two flavors:



Generalization
Regularization:  Various techniques which "actively impede the model's ability to fit perfectly to 
the training data, with the goal of making the model perform better during validation."   The 
model is simpler, more "regular."

Adding Dropout:  Dropout is applied to a layer, and is very simple:  with some probability p, 
drop out (as in, setting to 0.0) the outputs from the layer. 

This is one of the weirdest great ideas in Deep Learning: it seems like it can't possibly help, but 
it is one of the most effective and most common ways to regularize your model.



Generalization
Regularization:  Various techniques which "actively impede the model's ability to fit perfectly to 
the training data, with the goal of making the model perform better during validation."   The 
model is simpler, more "regular."

Reconsidering your choice of architecture:  Add more layers, or fewer, or of different widths. 
Consider starting with wider layers, and getting narrower as you go deeper. 
Consider different kinds of layers better suited to your data.  Google around to see what others 
have done successfully with similar data.

For example, complex image data is almost always processed using a completely different kind 
of layer.....



CNNs add convolution and pooling layers to focus on small regions of the data 
(here, images). Each input to the next layer is calculated as the dot product of 
the convolution kernel with a small region of the image. 

Convolutional Neural Networks



The convolution kernels are moved around the image, perhaps by some skip....

Convolutional Neural Networks



Since data is shared in the region covered by the kernel, various “features” of 
the image can be recognized in multiple places around the image:

Convolutional Neural Networks



And layers can be stacked.....

Convolutional Neural Networks



Convolutional Neural Networks

And layers can be stacked.....



A pooling layer reduces the dimensionality by averaging (or taking max) of 
small regions in the previous layer:

Convolutional Neural Networks



It is typical to alternate convolution and pooling layers and end with fully 
connected layers before output:

Convolutional Neural Networks



Convolutional networks are built similarly to FF networks, but with different 
components; you can specify all relevant hyperparameters:

Convolutional Neural Networks


